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1.  Foreword 

 
We conducted an eighteen months research program in support of the efforts to develop a non-destructive 
direct observation technique capable of manipulating and producing three-dimensional images of mesoscale 
materials and structures in their natural environments with chemical specificity and atomic resolution. Our 
goal was to improve the force detection technology in order to increase the resolution of magnetic resonance 
force microscopy (MRFM). 
 
This program provided improvements to the conditions that affect the realization of atomic resolution 
imaging of nanoscale structures with chemical specificity and atomic resolution. It centers on two aspects 
that affect the resolution of MRFM. 

 
These two aspects were: 
 
a) The cantilever displacement readout and therefore the force sensitivity achievable with mechanical 

detection when thermal noise is no longer the dominant source. 
 
b) The spin noise produced by the unwanted motion of the field gradient generating magnetic particle by 

higher cantilever oscillation modes. 
 
 



 

2. Statement of the problem studied 

 
Force detection in MRFM instruments is realized by measuring the deflection of a floppy cantilever. 
Brownian motion is the biggest contribution to the noise in MRFM. By lowering the temperature of the 
mechanical oscillator its random fluctuations can be reduced. MRFM experiments operating at fractions of 
one Kelvin temperatures are in progress. After Brownian motion, the next contribution to the noise in 
mechanical detection of magnetic resonance comes from the process of detecting cantilever displacement. 
Cantilever displacement sensing or readout noise affects MRFM measurements. In addition to readout 
noise, spin noise is present in MRFM measurements due to unwanted motion of the field gradient 
generating magnetic particle by higher cantilever oscillation modes. 
 
In this work we addressed cantilever displacement readout noise and spin noise problems. 
 
Cantilever displacements have been typically detected by optical techniques either by beam deflection or 
optical interferometry, with the highest displacement resolution so far obtained by interferometry. 
Cantilever displacement noise floor levels in the range of  
10-4

  Å Hz  have been reported.  
 
Our objective in this work was to increase the resolution of interferometric detection in order to bring the 
noise floor levels closer to their fundamental quantum limit (the noise spectral density associated with 
fluctuations in optical power due to light quantization and the noise limit of the photo detector). In 
addition, to provide a cantilever design that enhances the fundamental cantilever oscillation mode and 
pushes the high order harmonics to frequencies outside of the bandwidth of relevance to the MRFM 
experiments. 
 



 

3. Summary of the most important results 

 

a. Modeling and optimization of inerferometric displacement detection 

 
An important question in interferometric force detection schemes such as Magnetic Resonance Force 
Microscopy (MRFM)[1] or Atomic Force Microscopy (AFM)[1-3], is how to improve the detection 
sensitivity. Through a detailed optical analysis and optimization of the fiber optic interferometer. Such 
improvements were relevant in the efforts toward single spin detection and sub-micron resolution imaging 
in MRFM[4] and highly sensitive noncontact AFM[2, 3, 5].  
 
We used a plane wave propagation model that takes into account the complex index of refraction and 
extinction coefficient of the various components of interferometric force detection schemes. The model 
enabled us to enhance the interferometer finesse, subsequently improving the cantilever displacement 
detection signal to noise ratio (SNR). Using this model we obtained optimal cantilever geometries for 
minimizing deleterious heating effects due to light absorption while maximizing reflection. 
 
The majority of fiber optic interferometer detection schemes for AFM and MRFM rely on a design 
published by D. Rugar et. al. in 1989[6]. In this technique, a cleaved optical fiber is placed in close 
proximity to a micro-mechanical cantilever. The light reentering the fiber from reflections off the cantilever 
and the fiber-air interface produces fringes as a function of the wavelength of the light and distance between 
the cantilever and the end of the fiber. Detection of the force on the cantilever is made by measuring the 
cantilever’s deflection with its inherent displacement amplification gain provided by the ratio of the quality 
factor, Q, to the cantilever spring constant, k, when operating at the cantilever resonance frequency. This 
optical arrangement forms a simple Fabry-Perot interferometer. With a typical 4% reflection from a cleaved 
fiber-air interface and the reflection of either a Au-coated SiN or Si cantilever the Fabry-Perot fiber optic 
interferometer achieves a typical finesse of F   1. This method has been employed by members of the 
community performing force detected measurements, yet no rigorous analysis of the interferometric system 
and its components has been given. The model developed in our work highlights how the experimenter can 
enhance the finesse of the interferometer in such detection schemes by increasing the overall reflectance of 
the components comprising the cavity either with a metallic layer or a dielectric reflector, subsequently 
improving the SNR. An important consequence of this analysis showed that too thick a reflective coating on 
the fiber is detrimental to the SNR.  
 

b. Minimization of cantilever heating 

 
The drive to improve sensitivity in a number of cantilever-based force measurements has pushed the 
development of low damping (high Q), soft (low k) silicon cantilevers. In force-detected scanned probe 
microscopy techniques employing cantilevers, the thermo-mechanical motion is a major contributor to the 
noise spectral density. The minimum detectable force for a cantilever, Fmin, on the basis of the 
thermomechanical noise, is expressed as is Fmin =(4kBTB )

1/2
 where kBT is the thermal energy,  = k/Q is the 

mechanical resistance,  and B is the bandwidth.  The main method to reduce Fmin has involved operating at 
4K[7] or in the milliKelvin[8] regime. At these very low temperatures, the small heating effects of the 
incident laser light become apparent and it behooves the experimenter to consider minimizing such effects. 
We use our model to analyze the absorption and reflection properties for silicon cantilevers, so that 
deleterious heating effects caused by the incident laser light may be minimized. 
 

Asheghi and coworkers[9] report that the thermal conductivity for thin Si layers and devices as a function of 
temperature below 100 K decreases by as much as a factor of 20 from crystalline Si. The thermal 
conductivity for crystalline Si, from which most cantilevers are manufactured, decreases from a peak of 
5000 W/(m•K) at 20 K to less than 7 W/(m•K)) below 1 K[10]. At 4 K, the thermal conductivity of the Si 



cantilever is ~ 300 W/(m•K) and therefore the rise in temperature per light power absorption corresponds to 
1 mK/10 fW. We minimized the light absorption by employing radiation below the Si band gap, 1.1eV. 
Under these conditions the absorption coefficient drops below 10-6 and the cantilever becomes essentially 
nonabsorbing. In order to increase the reflectance of a Si cantilever while minimizing the absorption, the 
cantilever thickness, tc, was made such that tc = m /4n, where n is the index of refraction of the cantilever 

material,  is the wavelength and m is a positive integer.  
 
We applied our model to calculate the extent of light absorption and reflection as a function of silicon 
thickness for various wavelengths of commercially available light sources. As the extent of light absorption 
and reflection on silicon cantilevers does not depend on the reflective film placed on the fiber, we ignored 
this and assumed an Air/Silicon/Air interface. The reflectance, absorbance and ratio of reflection to 
absorption (as a measure of the efficiency) of a silicon cantilever with various wavelengths of were 
calculated. For our calculations, we used the optical constants of bulk materials compiled by Palik[11].  
 
We obtained an optimal thickness and wavelength conditions to use for the cantilever. The absorption 
decreases at wavelengths longer than the 1.1eV Si band gap. The maximum reflection of a cantilever was 
achieved for an optical thickness nt = m( /4) where m = 1, 2, …  and for  = 1.5 m the optimal thickness 
for a Si cantilever at the illumination spot is 1100Å. 
 

c. Interferometer optimization 

 

We used our model to predict the effects of placing a thin metallic reflector on the surface of the fiber in 
order to improve the interferometer finesse. The cantilever displacement, z, was obtained by 
approximating the detector response, R, around the maximum slope with a linear function of the cantilever 
displacement. 

    

R

z
=

2 Pr

r max

 

 
Given that the signal is proportional to the light intensity, to a first approximation the SNR for the 
interferometric detection is proportional to the finesse, F.   
 
The finesse of the Fabry-Pérot fiber-optic interferometer is a function of the Fabry-Pérot cavity reflectance 
and by enhancing the reflectance of the cavity the displacement resolution was increased. 
 
In order to increase the finesse of the interferometer we added a reflective coating to the fiber/air interface. 
We used the plane wave propagation model that we developed to predict the effects of a semitransparent 
coating. The results of the calculation for an optimized thickness Si cantilever (thickness=1100Å) at =1.5 

m point to an optimal value of the reflective coating. The reflectance of the fiber as a function of a film 
thickness for gold, silver, and aluminum were calculated. We decided to apply a gold film to the fiber, as 
this has a higher reflectance than aluminum at 1.5 m, and is more stable than silver under ambient 
conditions. The calculation showed that up to a factor of 16 in the slope, R/ z, can be achieved by 
increasing the finesse of the interferometer with the application of a reflective gold coating at the end of the 
fiber. An important result of the calculation is to note that too thick a coating is in fact detrimental. 
 

d. Experimental confirmation of cantilever displacement resolution enhancement 

 
To experimentally achieve the required thickness of metallic coating on the fiber, we designed a special 
vapor deposition chamber with a fiber optic feed-through that allows us to monitor the reflectance on the 
end of the fiber while performing the deposition. With a slow rate of evaporation of gold in this chamber,  



~7 Å/s, we were able to achieve good film deposition control. The application of a gold film of 100 Å 
brought the reflectance from a R = 0.04 value to R = 0.68.  
 
We verified the expected signal enhancement of a 68% reflectance Au coated fiber compared to a 4% 
reflectance cleaved fiber, by measuring the Brownian motion of a commercially available triangular AFM 
cantilever 180μm in length. Our intention for using an AFM cantilever, rather than a larger reflecting 
surface, was to also verify the ease of use of a gold-coated fiber in a real experimental situation applicable in 
force detection measurements. There was concern as to the ease of aligning the gold-coated fiber correctly, 
so as to observe the expected improved finesse. We found that with relative ease, the fiber could be aligned 
with respect to the cantilever to produce the expected signal response. These fibers were integrated into our 
experimental apparatus for magnetic resonance force microscopy experiments. 
 

e. Cantilever Optimization 

 
We developed a cantilever design that maximizes reflectance while minimizing heating without 
compromising other parameters of the cantilever. In collaboration with Professor Sy-Hwang Liou from the 
University of Nebraska at Lincoln who used the focused ion beam at his facility to carve a /4n thick palette 

(where n is the index of refraction of Si at   = 1.5 m) at the end of a Si cantilever. This cantilever had a ~ 
60% reflectance at =1.5 m. 

 

f.  Detector Optimization 

 
We designed and build a passive quenching circuit to operate the InGaAs APD in Geiger mode. The circuit 
worked well and provided us counting rates up to 5MHz which correspond to a dead time of a ~ 150 ns. One 
problem we did not anticipate is the extent of the number of dark counts when operating in Geiger mode for 
this device. The APD in Geiger mode just above the bias threshold had  150,000 counts/second, even upon 
cooling the APD never got below 100,000 counts/second. This meant that this InGaAs device which was 
grown on top of InP had a lot of electron traps produced by defects at the InGaAs-InP interface. The large 
number of traps made using these devices with quenching approach unsuitable for our application. We 
would have to gate them which would mean a substantial increase in the complexity of the electronics with 
yet unconfirmed benefits. We know that there are new APD’s with better epitaxy that should come in to the 
market in the next year. We therefore decided to wait. In the mean time we reverted to using the InGaAs 
PIN photodiodes. 
 

g. Reduction of cantilever generated spin noise 

 
D. Rugar group reported[12] that higher order modes of a cantilever can couple to the sample spin system 
and increase spin de-coherence (add spin noise into the system). Rugar’s group designed and implemented 
a new cantilever fabrication process to mass-load the cantilevers in order to shift to higher frequencies the 
vibration of the higher order modes. We obtained a similar effect by keeping the cantilever as rigid as 
possible and make it bend at a hinge next to the base. In addition to carving the optical palette (as reported 
above), we used a focused ion beam to carve a hinge at the base of the cantilever in order to reduce the 
spring constant (the original resonance frequency of this cantilever was 60kHz) and push the response of 
the higher order bending modes to higher frequencies.  

 
h. Design and construction of a low temperature high field MRFM apparatus 

 
We designed and built a low temperature MRFM to operate at 4 K in a super-insulated Dewar under a 
maximum field of 9 Tesla. Modifications in the facilities were made in order to accommodate the 
dimensions of the Dewar that holds the 9 Tesla 2.5” bore magnet. A 4 feet deep pit and a 1/2 Ton lifting 
system with an I beam mounted trolley was build in the laboratory to house the cryostat and the magnet. 



Temperature compensation features were incorporated into the design in order to facilitate the low 
temperature operation and alignment of the various components. The microscope consists of three plates 
two stacked in sequence by roads, springs and ball bearings. The two outer plates were made out of brass 
and the central plate is made out of oxygen free copper. The copper plate in the center contains the MRFM 
cantilever with an oriented magnetic particle mounted onto it. The upper plate holds the optical fiber that 
monitors the cantilever displacement. The lower plate holds two concentric piezoelectric ceramics that hold 
an RF coil and the sample and make it possible to scan the sample with respect to the cantilever. The outer 
plates have translation and tilt capabilities with respect to the copper plate at the center in order to align the 
fiber and the sample with respect to the cantilever. Alignment was performed at room temperature with the 
idea that the relative changes in the relative position of the different components upon cool down would be 
minimal or small at worst. A rapid cool down was achieved by incorporating a cold finger inside the 
vacuum chamber. Heat was driven away from the microscope through copper braid soldered between the 
microscope and the cold finger. Vibration isolation was achieved by a three soft spring suspension. Other 
than scanning the sample by the action of the piezoelectric ceramics, all adjustments are made a room 
temperature and ambient. We implemented an external cavity wavelength tuning that allows us to select the 
laser wavelength so that the sample to cantilever distance occurs at the position of maximum sensitivity. 
 
i. Experimental testing of the MRFM design 

 
In our first attempts we used bare Si3N4 cantilevers to which we deposited a layer of Au at the end and we 
attached and oriented a Sm-Co particle. Under the sample we wrapped a 10 turn coil that allows us to drive 
the cantilever. Test showed that 4K equilibrium under high vacuum conditions was achieved in a period of 
90 minutes. Several cool down tests were performed on the system an initial misalignment upon cool down 
problem was initially discovered and subsequently corrected. Periodic excitation of the cantilever and 
enhancements in force detection as described in previous sections were confirmed. 

 
 

j. Preparation and characterization of samples to test the feasibility of performing magnetic 

resonance force spectroscopy within the resonance slice. 

 
After demonstrating the improvements in force sensitivity that we proposed we started designing and 
preparing for experiments for the second phase of the DARPA MOSAIC program. In this phase we were 
planning to perform magnetic resonance force spectroscopy within the confines of a resonance slice in the 
presence of field gradients up to 5 orders of magnitude higher than ever attempted.  
 
Demonstrating experimental control of the dipolar Hamiltonian in the presence of a large gradient field, 
remains an open question in MRFM. If successful, these methods would allow for well-known multiple-
quantum NMR spectroscopy to be performed over a spatial dimension of the resonance slice in the sample 
(can be as small as a few nanometers). We intend to modulate the internal dynamics by a technique known 
as Average Hamiltonian Theory (developed by J. S. Waugh and Coworkers)[13]. This is a well established 
technique in Magnetic Resonance that has significantly impacted both solid state NMR imaging and solid 
state NMR spectroscopy. In the process we intend to apply a well-defined periodic sequence of RF pulses 
that induces an experimentally controllable time dependence on the otherwise constant internal 
Hamiltonians (for instance gradient, dipolar and chemical shift Hamiltonians, but may also include RF pulse 
error Hamiltonians as well). The time evolution (governed by the Hamiltonian) of the system will be 
experimentally controllable by the choice of the RF pulse sequence. Our first experiment was to perform a 
Magic Echo sequence in a doped Ce3+ sample of CaF2. We believe this to be a necessary step before 
attempting any type of magnetic resonance force spectroscopy. Our system of choice is single crystal of 
1wt.% Ce3+ doped sample of CaF2. We picked CaF2 because for this system the full internal Hamiltonian is 
well defined; it is just the dipolar coupling (the system is ~300 degrees below the Debye Temperature at 
room temperature and is therefore well-separated from the lattice). Single crystals of CaF2 have very large 
T1 and T1  at low temperatures (several minutes long). In order to avoid having such large relaxation times 



we selected samples of CaF2 doped with 1 wt.% Ce3+. We characterized our samples of CaF2 and obtained 
measured values of T1 at room temperature from a sample we send to the laboratory of Professor David 
Cory at MIT. The results revealed a sample with a T1 = 82ms at room temperature. Based on relaxation 
studies performed by Humphries and Day[14] on similar samples we estimate that at 4K T1 ~ 100 ms and 
T1  ~ 10ms. 
 
At this point the DARPA MOSAIC program was cancelled and we ran out of funds to continue pursuing 
this endeavor. 
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